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e describe a new analytical tool - Spectral trend
attribute analysis – and its application in the inter-
pretation of wireline log data. A typical well log
comprises a series of values of some property, nor-

mally taken at regularly spaced depth intervals. As such it
can be treated as a (depth-) time-series for the purposes of
mathematical analysis. Using all or a selected part of a facies-
sensitive log such as the natural gamma-ray (GR) log, we
compute a prediction error filter. The filter is chosen to pre-
dict new data samples from preceding samples. The filter is
used to calculate a new data-series, each point of which is the
numerical error between the predicted and actual value at the
corresponding depth. The resulting prediction error filter
analysis (PEFA) curve can be interpreted geologically as an
indicator of the continuity or otherwise of the stratigraphic
succession - larger errors imply more significant breaks in the
succession. When numerically integrated, the PEFA curve
yields a still more valuable curve - the INPEFA (Integrated
PEFA) curve - which reveals trends and other patterns that
are not generally apparent from the original log data. The
INPEFA curve leads directly to a method for the objective
subdivision of geological successions by the identification of
key surfaces, somewhat analogous to the ‘sequence’ analysis
of seismic profiles. We outline the basic principles of spectral
trend attribute analysis, and stress the universality of its
applicability to routine stratigraphic analysis of well logs.

Introduction
Wireline log data represent a vast repository of quantitative
information about subsurface geology. Whereas their applica-
tion in petrophysics and in the calibration of seismic data is
necessarily quantitative, geological applications are conven-
tionally more qualitative (Rider, 1996). The scope for a more
quantitative approach to the geological interpretation of log
data is enormous; we here describe such an application, with
direct bearing on the stratigraphic interpretation of well logs.

The vast majority of well logs comprise (after optional
resampling) regularly spaced readings of some physical
quantity such as resistivity. Whereas earlier wireline logs
were recorded in analogue form and thus appear as continu-
ous traces, modern logs are recorded digitally, with data-

points at discrete intervals. A log being a series of values at
regularly spaced increments, it is immediately amenable to
all the techniques of ‘time-series’ analysis, including the spec-
tral (frequency) methods that are the subject of this paper. 

From the basic principle of superposition, it is generally
(though not universally) true that the deeper a borehole pen-
etrates, the older are the strata encountered. However, geo-
logical age does not increase uniformly with depth, for two
reasons: (1) rates of deposition are highly variable; and (2)
deposition is a highly discontinuous process at any one loca-
tion (Sadler, 1999). A series of data-points sampled at regu-
lar intervals down a borehole is therefore regular only in
depth. (It may be regular in terms of sampling time, if the
logging tool is drawn at uniform speed up the borehole, but
this is not geologically interesting). However, it is anything
but regular in terms of geological time. In practice, geologists
are accustomed to working within this limitation of their
basic data, which applies just as much at outcrop as in the
subsurface. More important is the question of whether this
invalidates the application of classical ‘time-series’ methods
to the geological interpretation of wireline log data. We do
not believe so, and we invite the reader to judge our
approach by its results.

The origin of our use of spectral methods comes from our
interest in the detection of Milankovitch rhythms in strati-
graphic data. Orbitally forced climate changes are predicted
to be recorded in strata, because of the likely influence of
varying insolation on mechanisms of erosion, transport and
deposition. Verification of this prediction over recent decades
(Schwarzacher, 1993; Weedon, 2003) opens up the possibili-
ty of the identification of individual climate cycles and their
use in high resolution correlation. Since the predicted
Milankovitch periods fall in the range of tens to hundreds of
thousands of years, considerable improvements in resolution
are theoretically possible, compared with the conventional
methods of biostratigraphy and seismic stratigraphy. The
possibility that Milankovitch cycles might be detectable in
wireline logs led us to develop specialized software for the
spectral analysis of logs.

A problem with applying spectral methods such as
Fourier Analysis to geological ‘time-series’ data is the cer-
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tainty that there are significant (but unknowable) discontinu-
ities and other changes in the properties of the data, as out-
lined above. The spectral properties of wireline logs are
therefore likely to change, probably very considerably,
through any individual well. Even within a single geological
unit such as a formation, discontinuities are to be expected.
Thus, spectral analysis of an entire well, or even of a whole
formation, may be rather uninformative and indeed mean-
ingless. Using small windows of analysis is not a viable alter-
native, as it results in poorly defined spectra when traditional
(Fourier type) methods are applied. Spectral estimation
based on, for example, maximum entropy (Childers, 1978)
or wavelet transform methods, is the more appropriate
approach for application to well data.

Assuming that the record is characterized by cyclic pat-
terns imposed by climate change, can we use these cyclic
properties to investigate the patterns of continuity versus dis-
continuity in the data? Mathematically, this requires quan-
tification of spectral change. Although this could be
performed through the comparison of the spectral character-
istics of successive windows of analysis (e.g. first and second
order moments calculated from the respective spectra) we
have developed a different approach. Since spectra deter-
mined through MESA are based on the calculation of predic-
tion error filters (Childers, 1978), quantification of spectral
change may be implemented through the application of pre-
diction error filtering to our well log data.

Linear prediction of time (depth) series
Linear prediction of data series involves the construction of
a ‘best guess’ of the value of an unknown data-point through
the linear combination of known, but noisy data-points.
Prediction could be either in time (assuming some sort of

causality, or recurring events) or in space. In practice, predic-
tion of well-log data takes place in the depth domain and
should thus be regarded as spatial prediction. In theory, a
link between depth and geological time is provided by sedi-
mentation rate, but this is a highly scale-dependent quantity
(Sadler 1999) and it cannot be determined to the required
level of accuracy. Net accumulation rate (total thickness
divided by total elapsed time) is a poor approximation but is
generally all that is available.

The prediction process can be mathematically described
by equation (1). 

Here yn* is the data point predicted from the linear combina-
tion of known data points yn-j through weighting with dj.
Optimal prediction involves the selection of the individual
weights dj (the prediction coefficients) such that the discrep-
ancy between known yn and predicted yn* is minimized (in
some optimal sense) for the set of data-points that are to be
predicted.

In our case, the predictable part of a dataset is rather
uninteresting, and it is the unpredictability that represents
valuable information. In the context of stratigraphic inter-
pretation of well logs the unpredictable part of the data set
can be expected to relate to depositional hiatuses.

Spectral estimation from prediction coefficients
The coefficients found for the optimal prediction of a data
series are closely related to the spectral content of the under-
lying data. In fact the prediction coefficients can be easily
transformed into a spectral representation of the data known
as the maximum entropy spectrum. Changes in prediction
coefficients thus relate to changes in spectral content and
depth ranges that appear as highly unpredictable will most
probably be anomalous in their spectral characteristics.
Prediction error analysis can thus give an indication of spec-
tral change without the necessity to perform a full spectral
analysis. This makes it very fast in its practical application,
allowing a high degree of interactivity when analyzing data.

We turn now to the geological interpretation of the
results of prediction error filter analysis (PEFA). An example
of the application of PEFA to a typical gamma-ray log is
shown in Figure 2. The effect of the method is to move a win-
dow of user-defined length (typically in the order of 10 m) up
the data, comparing the actual data with the filter, and scor-
ing an error (positive or negative) at each depth. The result is
an irregularly serrated curve, varying about a straight verti-
cal line. If it were possible to compute a perfect prediction fil-
ter (for example, if the log were a perfectly regular waveform
such as a sine wave), the PEFA curve would be a straight ver-
tical line. Although we hesitate to put quantitative confi-
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Figure 1 Example of Maximum Entropy Spectral Analysis
(MESA) of the GR log with three different analysis window
sizes. Permian Rotliegend interval, Netherlands Offshore
(courtesy NITG-TNO).
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dence limits on the magnitude of the errors, it is reasonable
to interpret intervals of rather small errors as ‘noise’, imply-
ing that there is relatively little discontinuity in the spectral
properties of the data from one window to the next. Where
there are larger ‘spikes’ in the PEFA curve, we can infer that
there is a more or less significant discontinuity in the spectral
properties of the data. This in turn may imply a discontinu-
ity of geological significance. For example, in Figure 2 at
3980 m there is a major negative spike, implying that the GR
value at that depth has been significantly over-estimated by
the prediction filter. This implies a sudden upward transition
from shale to sand, the degree of discontinuity possibly
implying that this could be a candidate location for a
sequence boundary. At 3965 m there is a major positive
spike, implying under-estimation of the GR value, which
could be a candidate for a flooding surface as it represents a
relatively sudden upward increase in shaliness.

The above interpretation of PEFA spikes is rather subjec-
tive, as it is quite normal for a geological succession to com-
prise many apparently sudden switches between sand and
shale. We attempt to differentiate between those of local and
more regional significance as follows. If the log is smoothed
before using PEFA, then some of the less significant predic-
tion errors are likely to disappear. Figure 3 shows the same
log as Figure 2, with three copies of the original GR log, each
smoothed with a median filter of successively longer length.

The resulting PEFA curves are shown in Figure 4. Notice
how some of the spikes in Figure 2 have been reduced to the
level of ‘noise’ by this process, whereas others persist
through the smoothing operation. Our interpretation is that
the more persistent spikes are likely to have more regional
significance than those that have disappeared.

Spectral trend attribute analysis – the INPEFA
curve and its interpretation
Useful and novel as the PEFA curve is, its value is eclipsed by
that of the INPEFA curve. The PEFA curve is transformed
into the INPEFA in one step, by simple mathematical integra-
tion. An example of the result is shown in Figure 5. Note that
we routinely display the INPEFA curve in a wider track than
other logs, because its significance lies in the trends that are
added to the variance of the raw log data.

The trends revealed by INPEFA result from the cumula-
tive effect of integrating the PEFA curve. A segment of the
data in which the prediction errors are more often negative
will have an overall negative (up-to-the-left) trend. A seg-
ment of the data in which the errors are more often positive
will have an overall positive (up-to-the-right) trend. As in so
many aspects of stratigraphic data, smaller trends are super-
imposed on larger ones; an overall positive trend will have
intervals with negative trend within it.

The key features of the INPEFA curve whose significance
we now consider are the trends themselves, and the turning-
points between them. These are the specific features that
INPEFA reveals through its spectral approach to the original
data; what (if any) is their geological significance?
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Figure 2 Spectral change attribute analysis (PEFA) of the GR
log, showing discontinuities in the spectral bands as shown
as negative peaks (to the left) and positive peaks (to the
right). These peaks represent breaks in the cycle successions
and can be interpreted as major or minor stratigraphic
breaks.

Figure 3 As Figure 2 but with
PEFAs of logs smoothed with
median filters of three different
lengths (1 m, 5 m and 10 m).

Figure 4 Original GR log
and PEFA curves derived
from the smoothed logs of
Figure 3.
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A negative INPEFA trend results from a cumulatively neg-
ative set of prediction error values. Negative prediction error
values imply over-estimation of the GR value by the filter.
Therefore, an overall negative trend in the INPEFA curve rep-
resents a segment of the data through which the actual values
of the log are less than predicted. In the case of a GR log, the
actual values are more ‘sandy’ than predicted. In very general
terms, we can therefore think of a negative INPEFA trend as
‘regressive’, although its exact significance will be dependent
on the geological context. A sanding-up trend could, for exam-
ple, imply (a) increased supply of coarse sediment, (b) shallow-
ing-up, or (c) decreasing distance from shoreline. We have to
be careful to distinguish between the mathematical signifi-
cance of the INPEFA trend, which is precise and objective, and

its geological interpretation, which may be more subjective.
Conversely, an overall positive trend in the INPEFA rep-

resents a segment of the data through which the actual val-
ues of the log are greater than predicted. For a GR log, this
means that the actual values are more ‘shaley’ than predict-
ed, implying (in general terms again) a ‘transgressive’ trend.
This might represent (a) decreased sediment supply, (b)
increase in water depth or accommodation space, or (c)
increasing distance from shoreline, depending on context.

Given the geological significance of INPEFA trends, the
points at which the trends change, especially where they change
between positive and negative, should also be important. These
turning-points in the INPEFA curve have proved to be perhaps
the most valuable feature of this new approach to log data.

At the turning-point where, say an overall negative (sand-
ing-up) trend gives way to an overall positive (shaling-up)
trend, we can be sure that some significant change has affect-
ed the depositional system. The sand supply has been
‘switched off’, possibly through a change in base-level, which
in turn may be linked to a climatic change. At the opposite
turning-point, from positive to negative, the reverse effect
has taken place and there is an abrupt resumption of sandier
sediment deposition.

Assuming that we are correct in the assumption we made
at the outset - that orbitally-forced climatic change has a
detectable influence on depositional facies - then it is very like-
ly that some INPEFA turning-points represent significant
changes in the depositional regime brought about by climate
change. (Recall that we are using spectral methods to generate
the PEFA and INPEFA transforms, and that such methods
depend on the waveforms inherent in the original log data.)
This being so, those changes are likely to be synchronous on a
regional scale (and within a climatic belt). This important con-
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Figure 5 Example
of Spectral trend
attribute analysis
(INPEFA) of the
GR log (same well
as in Figure 1 and
2). See text for
explanation (cour-
tesy NITG-TNO).

Figure 6 Example of two-well correla-
tion to illustrate hierarchical approach
to INPEFA analysis. Solid red lines rep-
resent cycle boundaries, picked at posi-
tive-to-negative turning points; dashed
blue lines are ‘termination surfaces’,
picked at negative-to-positive turning
points. Thicker red lines bound ‘mas-
ter’ cycles; thinner red lines bound
higher order ‘slave’ cycles. 
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clusion is the basis for the subdivision of INPEFA curves into
a hierarchy of cyclic units, and their correlation between wells.
Note, however, that climatic change in the Milankovitch
waveband is limited to periodicities in the order of 102 to 103

ka. Orbitally-forced climatic change cannot therefore be
invoked for features of the INPEFA curve representing longer
periods of time, and it is likely that we are looking at the inter-
action of longer period tectonic change, with shorter period
climatic cyclicity superimposed upon it.

The above arguments suggest that a hierarchical approach
to the stratigraphic analysis of the INPEFA transform is an
appropriate way to proceed. Detailed examples of analysis
are beyond the scope of this paper, but we end by illustrating
the concept with a simple two-well correlation using a strati-
graphic breakdown based on the INPEFA curve. Figure 6
illustrates the hierarchical approach by using thicker lines to
represent the main or ‘master’ cycle boundaries that we iden-
tify in this example, with thinner lines to represent the high-
er-order ‘slave’ cycles. The inference that the turning-points
represent regionally significant events is the justification for
using the INPEFA curves to generate a stratigraphic frame-
work that can be assumed to be time-significant.

Conclusions
Through investigation of the spectral properties of wireline
log data, we have discovered and developed an entirely new
methodology for the stratigraphic interpretation of logs. The
PEFA and INPEFA curves yield information that is otherwise
largely hidden in untreated logs. The PEFA curve reveals
breaks in the continuity of the spectral properties of the logs,
and gives useful information about the relative magnitude of
those breaks. The INPEFA curve reveals trends in the data,
separated by turning-points that can be interpreted as region-
ally significant events in the depositional history of the basin.

Underlying these discoveries is the assumption that
appropriate (facies-sensitive) logs can provide a good proxy
for the effects of Milankovitch-scale climate change as
recorded in sedimentary strata. Treating the wireline logs as
‘time-series’ (in an analytical sense though not in a strict geo-
logical sense) allows the application of the spectral methods
that lead to PEFA and INPEFA. The examples in this paper
all use the natural gamma-ray (GR) log, which is widely
available in routine log suites, is relatively insensitive to hole
conditions, and (most importantly) is generally a good proxy

for depositional environment, in clastic systems at least.
Interpretation of other logs, or of the GR log in carbonates,
may differ somewhat from the examples shown here.

The approach to INPEFA analysis that we advocate here
has parallels with sequence stratigraphy; we identify key
bounding surfaces, with time significance, which separate
intervals that may be of distinctive character. Because it is
notoriously difficult to pick seismically defined sequence
boundaries and maximum flooding surfaces in well logs, we
do not draw a direct parallel between these surfaces and our
INPEFA turning points. Our approach, on the other hand,
allows a more objective subdivision of well logs into time-sig-
nificant and correlatable units, and at a higher resolution, than
is possible in seismic data. Further work will be needed to
establish in more detail the relationship between the key sur-
faces of seismic stratigraphy and those revealed by INPEFA.
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